SYMBOLS FOR TIME

\(\tau \) = time variable
\(t \) = time now,
\(T \) = target date
\(T^* \) = modeling limit (t=forever)

Cost spent to build variation point \(i \) at time \(\tau \)

\(c_i(\tau) \)

\(i \) = index over variation points
SYMBOLS FOR TIME

\(\tau \) = time variable

\(t \) = time now,

\(T \) = target date

\(T^* \) = modeling limit (\(t=\text{forever} \))

Cost spent to build variation point \(i \) at time \(\tau \)

...adjusted by a factor to account for net present value of money

\[c_i(\tau)e^{-r(\tau-t)} \]

\(i \) = index over variation points

\(r \) = assumed interest rate
SYMBOLS FOR TIME

\(\tau \) = time variable
\(t \) = time now,
\(T \) = target date
\(T^* \) = modeling limit (t=forever)

Cost spent to build variation point \(i \) at time \(\tau \)

Expected cost summed over all relevant time intervals

\[E \left[\sum_{\tau=t}^{T} c_i(\tau) e^{-r(\tau-t)} \right] \]

...adjusted by a factor to account for net present value of money

\(i \) = index over variation points
\(r \) = assumed interest rate
SYMBOLS FOR TIME

\(\tau = \) time variable
\(t = \) time now,
\(T = \) target date
\(T^\star = \) modeling limit \((t=\text{forever})\)

Expected costs of building variation point \(i \) incurred from now until time \(T \)

\[
E \left[\sum_{\tau=t}^{T} c_i(\tau) e^{-r(\tau-t)} \right]
\]

\(i = \) index over variation points
\(r = \) assumed interest rate
SYMBOLS FOR TIME

τ = time variable

\(t = \) time now,

\(T = \) target date

\(T^* = \) modeling limit (t=forever)

\(X_{i,k}(\tau) \)
value of variation point \(i \) in product \(k \)
at time \(\tau \)

\(i = \) index over variation points

\(r = \) assumed interest rate

\(k = \) index over products
SYMBOLS FOR TIME

\(\tau \) = time variable
\(t \) = time now,
\(T \) = target date
\(T^* \) = modeling limit (\(t=\)forever)

\(i \) = index over variation points
\(r \) = assumed interest rate
\(k \) = index over products

\(X_{i,k}(\tau) \)

value of variation point \(i \) in product \(k \) at time \(\tau \) = \(VMP_{i,k}(\tau) - MC_{i,k}(\tau) \)

marginal value of the \(i^{th} \) variation point in the \(k^{th} \) product at time \(\tau \).

marginal cost of tailoring variation point \(i \) for use in product \(k \)
SYMBOLS FOR TIME

τ = time variable

\(t \) = time now,

\(T \) = target date

\(T^* \) = modeling limit (t=forever)

\[X_{i,k}(\tau) e^{-\tau(\tau-t)} \]

value of variation point \(i \) in product \(k \) at time \(\tau \) = \(VMP_{i,k}(\tau) - MC_{i,k}(\tau) \)

marginal value of the \(i^{th} \) variation point in the \(k^{th} \) product at time \(\tau \).

\(i \) = index over variation points

\(r \) = assumed interest rate

\(k \) = index over products

marginal cost of tailoring variation point \(i \) for use in product \(k \)
SYMBOLS FOR TIME
\(\tau = \text{time variable} \)
\(t = \text{time now} \),
\(T = \text{target date} \)
\(T^* = \text{modeling limit (t=forever)} \)

\[VMP_{i,k}(\tau) = \sum_{\tau=T}^{T^*} X_{i,k}(\tau) e^{-r(\tau-t)} \]

\(i = \text{index over variation points} \)
\(r = \text{assumed interest rate} \)
\(k = \text{index over products} \)

value of variation point \(i \) in product \(k \) at time \(\tau \) ...

summed over all time

...adjusted by a factor to account for net present value of money

marginal value of the \(i^{th} \) variation point in the \(k^{th} \) product at time \(\tau \)

marginal cost of tailoring variation point \(i \) for use in product \(k \)
SYMBOLS FOR TIME
\(\tau \) = time variable
\(t \) = time now,
\(T \) = target date
\(T^* \) = modeling limit (t=forever)

Value cannot be negative

\[
\max(0, \sum_{\tau=T}^{T^*} X_{i,k}(\tau) e^{-r(\tau-t)})
\]

marginal value of the \(i \)th variation point in the \(k \)th product at time \(\tau \).

\(i \) = index over variation points
\(r \) = assumed interest rate
\(k \) = index over products

\(\text{adjusted by a factor to account for net present value of money} \)

...summed over all time

\(\text{marginal cost of tailoring variation point \(i \) for use in product \(k \)} \)
SYMBOLS FOR TIME

\(\tau \) = time variable
\(t \) = time now,
\(T \) = target date
\(T^* \) = modeling limit (t=forever)

\(r \) = assumed interest rate

\(i \) = index over variation points

\(k \) = index over products

\[
\max (0, \sum_{\tau=T}^{T^*} X_{i,k}(\tau) e^{-r(\tau-t)})
\]

value of variation point \(i \) in product \(k \) over all time
SYMBOLS FOR TIME
\(\tau \) = time variable
\(t \) = time now,
\(T \) = target date
\(T^* \) = modeling limit (t=forever)

\[E \left[\sum_k \max \left(0, \sum_{\tau=T}^{T^*} X_{i,k}(\tau) e^{-r(\tau-t)} \right) \right] \]

value of variation point \(i \) in product \(k \) over all time...
...and over all products

\(i \) = index over variation points
\(r \) = assumed interest rate
\(k \) = index over products
SYMBOLS FOR TIME

$\tau = \text{time variable}$
$t = \text{time now,}$
$T = \text{target date}$
$T^* = \text{modeling limit (t=forever)}$

probability that variation point i will be ready for use by time T

value of variation point i in product k over all time...
...and over all products

$i = \text{index over variation points}$
$r = \text{assumed interest rate}$
$k = \text{index over products}$
SYMBOLS FOR TIME

\(\tau = \) time variable
\(t = \) time now,
\(T = \) target date
\(T^* = \) modeling limit (\(t = \) forever)

Expected costs of building variation point \(i \) incurred from now until time \(T \):

\[
-E \left[\sum_{\tau=t}^{T} c_i(\tau) e^{-r(\tau-t)} \right]
\]

Probability that variation point \(i \) will be ready for use by time \(T \):

\[
+p_{i,T} E\left[\sum_{k} \max(0, \sum_{\tau=T}^{T^*} X_{i,k}(\tau) e^{-r(\tau-t)}) \right]
\]

Value of variation point \(i \) in product \(k \) over all time...

...and over all products

\(i = \) index over variation points
\(r = \) assumed interest rate
\(k = \) index over products
SYMBOLS FOR TIME

\(\tau \) = time variable
\(t = \) time now,
\(T = \) target date
\(T^* = \) modeling limit (t=forever)

Expected costs of building variation point \(i \) incurred from now until time \(T \)

\[
\max \left(0, -E \left[\sum_{\tau=t}^{T} c_i(\tau) e^{-r(\tau-t)} \right] \right)
\]

Value cannot be negative

\[
+ p_{i,T} E \left[\sum_{k} \max \left(0, \sum_{\tau=T}^{T^*} X_{i,k}(\tau) e^{-r(\tau-t)} \right) \right]
\]

probability that variation point \(i \) will be ready for use by time \(T \)

value of variation point \(i \) in product \(k \) over all time...

...and over all products

\(i = \) index over variation points
\(r = \) assumed interest rate
\(k = \) index over products
SYMBOLS FOR TIME

- \(\tau \) = time variable
- \(t \) = time now,
- \(T \) = target date
- \(T^* \) = modeling limit (t=forever)

Value of variation point \(i \) over the time interval \((t, T)\)

\[
v_i(t, T) = \max(0, -E \left[\sum_{\tau=t}^{T} c_i(\tau)e^{-r(\tau-t)} \right] + p_i,T E\left[\sum_{k} \max(0, \sum_{\tau=T}^{T^*} X_{i,k}(\tau)e^{-r(\tau-t)}) \right])
\]

- Probability that variation point \(i \) will be ready for use by time \(T \)
- Value cannot be negative

Expected costs of building variation point \(i \) incurred from now until time \(T \)

- Value of variation point \(i \) in product \(k \) over all time...
- ...and over all products

\(i \) = index over variation points
\(r \) = assumed interest rate
\(k \) = index over products
SYMBOLS FOR TIME

$\tau =$ time variable
$t =$ time now,
$T =$ target date
$T^* =$ modeling limit (t=forever)

Value of variation point i over the time interval (t,T)

\[
v_i(t,T) = \max(0, -E\left[\sum_{\tau=t}^{T} c_i(\tau) e^{-r(\tau-t)}\right])
\]

Probability that variation point i will be ready for use by time T

Value cannot be negative

Expected value over all products

\[
V = \sum_{i=1}^{\text{num variation points}} v_i(t,T)
\]

Value of variation point i in product k at time τ

\[
VMP_{i,k}(\tau) = \frac{\text{margin value of the } i^{th} \text{ variation point in the } k^{th} \text{ product at time } \tau}{\text{potential cost of use}}
\]

Marginal value of the i^{th} variation point in the k^{th} product at time τ.

Marginal cost of tailoring variation point i for use in product k

Value cannot be negative

Cost spent to build a variation point at time τ

Expected cost summed over all relevant time intervals

...adjusted by a factor to account for net present value of money

Summed over all time

$i =$ index over variation points
$r =$ assumed interest rate
$k =$ index over products