Introduction to Logical Reasoning with RESOLVE

Joseph E. Hollingsworth, IUS
Murali Sitaraman, Clemson

This research is funded in part by NSF grants CCF-1161916 and DUE-1022941.
Where Can These Ideas Be Taught?

- High school computing courses (in progress)
- Beginning programming courses (e.g., Ohio State intro sequence)
- Discrete structures and data structures courses (e.g., IUS)
- Programming language courses (e.g., Denison)
- Software development and software engineering courses (e.g., Clemson)
This Workshop

- High school computing courses (in progress)
- Beginning programming courses (e.g., Ohio State intro sequence)
- Software development and software engineering courses (e.g., Clemson)
Resources

- Google: Clemson RESOLVE
- https://www.cs.clemson.edu/resolve/
 - Go to Tab Teaching
 - Go to Tab Research for publications
 - Go to Tab Web IDE for tools
Workshop Organization: Session I

- Collaborative, active learning pedagogy
- “Hands on” beginner reasoning
- Reasoning with objects
 - Mathematical modeling made simple
- Design by contract
 - Introductory reasoning activities
- Discussion
Workshop Organization: Session II

- Detailed specification example
- “Hands on” reasoning with objects
- Software engineering reasoning exercises and projects
- Discussion
Beginner Reasoning: Single Assignment Statement

- What will be the output for input 5?
- What will be the output for input -5?

Read(I);

I = I + 1; -- This is the assignment statement

Output(I);
Beginner Reasoning: Single Assignment Statement

- What will be the output for input 5?
- What will be the output for input -5?
- We use := for assignment to avoid confusion between equals in math and assignment statements

Read(I);
I := I + 1; -- This is the assignment statement
Output(I);
Beginner Reasoning: Single Assignment Statement

- What will be the output for input 5?
- What will be the output for input -5?
- What will be the output for input max_int? [Not for beginner!]

Read(I);
I := I + 1; -- This is the assignment statement
Output(I);
Beginner Logical Reasoning: Single Assignment Statement

What is the relationship between input and output?

Read(I);

Remember; -- Remember the value of I as #I here

I := I + 1;

Confirm ??? -- How is I related to #I?

Output(I);
Beginner Logical Reasoning: Single Assignment Statement

What is the relationship between input and output?

Read(I);

Remember; -- Remember the value of I as #I here

I := I + 1;

Confirm I = #I + 1; -- Logical assertion, not assignment!

Output(I);
Beginner Logical Reasoning: Single Assignment Statement

Other acceptable answers

Read(I);

Remember; -- Remember the value of I as #I here

I := I + 1;

Confirm #I + 1 = I;

Output(I);
Beginner Logical Reasoning:
Single Assignment Statement

Other acceptable answers

Read(I);

Remember; -- Remember the value of I as #I here
I := I + 1;

Confirm #I = I - 1;

Output(I);
“Hands On” Beginner Logical Reasoning

- Google Clemson RESOLVE
- Bookmark: https://www.cs.clemson.edu/resolve/
- Go to Tab: Web IDE
- Click on Link: Begin to Reason
“Hands On” Basic Logical Reasoning

- Google Clemson RESOLVE
- Bookmark: https://www.cs.clemson.edu/resolve/
- Go to Tab: Web IDE
- Click on Link: Reason with Components
Basic Activities and Reasoning

- Click on Item Components to bring up Finder
- Select Programs in the Finder
- Select the first activity on reasoning
- Proceed with the activities in the order they appear to learn to reason about various constructs
Creating New Activities

- Sign in with an e-mail using the “sign in” link near top right
- Once you’re signed in, click on Item Components to bring up Finder
- Right Click on Programs in the Finder to create a new program
- Right Click on Concepts in the Finder to create a new (reusable) concept
Contract specifications – comparing informal specs with formal specs
- Mathematical modeling – abstraction
- Generating test data from specs
- Reasoning assistant tool
CPSC 3720 – Software Engineering at Clemson

- Usual Topics
 - Requirements analysis
 - Design and specification
 - Component-based implementation
 - Quality assurance

- Formal Reasoning
All Levels

- Collaborative Approach
 - Pairs or small groups
 - In class or homework
Collaborative Method

- Pairs or small groups
- With or without tools
- Each team presents their findings
- Collaboration both within teams and among teams
Selective Adaptation

- Pick and choose appropriate reasoning concepts and/or tools
- Faculty expertise
- Student background
Objectives

- Read formal specifications
 - Create test points from the specs
- Use component specifications to build larger systems
 - Work in teams
- Carry out formal verification of components
 - Use automated rules
Methods

- Collaborative learning
 - Teams of 2 to 4 members
 - Read specs
 - Implement specs
 - Verify implementations
 - Build larger systems.