Def: A regular grammar (RG) is a CFG where all productions are of the form \(\alpha \rightarrow \beta \) where \(\beta \) has the form of \(aB \) or \(a \) where \(a \in V_t \) and \(B \in V_n \).

Def: Regular expressions are those expressions that can be constructed from the following rules:

1. \(\phi \) is a regular expression denoting the empty set.
2. \(\varepsilon \) is a regular expression denoting the language consisting of only the empty string, i.e. \(\{ \lambda \} \).
3. \(a \) where \(a \in V_t \) is a regular expression.
4. if \(e_1 \) and \(e_2 \) are regular expressions denoting the languages \(L_1 \) and \(L_2 \), then
 a. \(e_1 \mid e_2 \) \(L_1 \cup L_2 \)
 b. \(e_1 e_2 \) \(L_1 L_2 \)
 c. \(\{ e_1 \} \) \(L_1^* \)
are regular expressions.

Def: A deterministic finite state acceptor (DFA) is a 5-tuple \((Q, V_t, M, q_0, Z) \) where

1. \(Q \) is a finite non-empty set called the states,
2. \(V_t \) is the alphabet,
3. \(M \) is a mapping from \(Q \times V_t \rightarrow Q \),
4. \(q_0 \) is the start state where \(q_0 \in Q \), and
5. \(Z \subseteq Q \) is a non-empty set of final states.

e.g.

Non-determinism versus determinism

\[L(\text{NFA}) = L(\text{DFA}) \]
Regular Language \rightarrow regular grammar

\{ a^n b a^n \mid n, m > 0 \}

Click [here](#) for an answer:

regular grammar \rightarrow regular expression

$$
S \rightarrow a S \\
\mid a B \\
B \rightarrow b C \\
C \rightarrow a C \\
\mid a
$$

Click [here](#) for an answer
regular grammar \rightarrow NFA

\[
\begin{align*}
S & \rightarrow a\ S \\
& \quad |\ a\ A \\
A & \rightarrow b\ B \\
B & \rightarrow a\ C \\
C & \rightarrow a\ C \\
& \quad |\ \lambda
\end{align*}
\]

Click [here](#) for an answer

FSA \rightarrow regular grammar

Click [here](#) for an answer

FSA \rightarrow regular expression

Click [here](#) for an answer
regular expression \rightarrow FSA

$$a^+ b a^+$$

Click [here](#) for an answer

NFSA \rightarrow DFSA

Click [here](#) for an answer
ANSWERS

\[S \rightarrow a\ S \]
\[| \ a\ A \]
\[A \rightarrow b\ B \]
\[B \rightarrow a\ B \]
\[|\ a \]

\[a^+ \ b\ a^+ \]

\[q_0 \rightarrow a\ q_1 \]
\[q_1 \rightarrow a\ q_1 \]
\[|\ b\ q_2 \]
\[q_2 \rightarrow a\ q_3 \]
\[q_3 \rightarrow a\ q_3 \]
\[|\ \lambda \]

\[a^+ \ b\ a^+ \]

which simplifies to
\[a^+ \ b\ a^+ \]