Operator Precedence Relations

Def: A context free grammar is an operator precedence grammar if

1. all right hand sides are unique with respect to terminal symbols,
2. there are no empty right hand sides,
3. no right hand side has two non-terminal symbols next to each other, and
4. at most one operator precedence relation holds between pairs of terminal symbols in the grammar.

The first three conditions are easily verifiable by simply inspecting the grammar. The fourth condition requires a little work. There are three operator precedence relations that hold between pairs of terminal symbols in a grammar: less than ($<$), equals ($=$), and greater than ($>$). They are defined as

Def: $V_i \leq_o V_j \text{ if } \exists$ a right hand side of a production of the form $\alpha V_i V_j \beta$ where $V_i, V_j \in V$ and $\alpha, \beta \in V'$

or

\exists a right hand side of a production of the form $\alpha V_i N V_j \beta$ where $V_i, V_j \in V$, $N \in V_n \cup \{ \lambda \}$, and $\alpha, \beta \in V'$.

Def: $V_i <_o V_j \text{ if } \exists$ a right hand side of a production of the form $\alpha V_i V_k \beta$ and $V_k \Rightarrow^* V_j \delta$ where $V_k \in V_n$, $V_i, V_j \in V$, and $\alpha, \beta, \delta \in V'$

or

\exists a right hand side of a production of the form $\alpha V_i V_k \beta$ and $V_k \Rightarrow^* N V_j \delta$ where $V_k \in V_n$, $V_i, V_j \in V$, $N \in V_n \cup \{ \lambda \}$, and $\alpha, \beta, \delta \in V'$.

Def: $V_i >_o V_j \text{ if } \exists$ a right hand side of a production of the form $\alpha V_k V_j \beta$ and $V_k \Rightarrow^* \delta V_i$

or

\exists a right hand side of a production of the form $\alpha V_k V_l \beta$ and $V_k \Rightarrow^* \delta V_j$ and $V_l \Rightarrow^* V_j \gamma$ where $V_k, V_l \in V_n$, $V_i, V_j \in V$, and $\alpha, \beta, \delta, \gamma \in V'$

or

\exists a right hand side of a production of the form $\alpha V_k V_j \beta$ and $V_k \Rightarrow^* \delta V_i N$, where $V_i, V_j \in V$, $N \in V_n \cup \{ \lambda \}$, and $\alpha, \beta, \delta \in V'$.

Let's also define two binary relations that will be helpful in computing operator precedence relations later.

Def: $V_i h_o V_j$ holds if $V_i \rightarrow V_j \alpha \in P$ where $V_i \in V_n$, $V_j \in V_n$, and $\alpha \in V'$

or

$V_i \rightarrow N V_j \alpha \in P$ where $V_i \in V_n$, $V_j \in V_t$, $N \in V_n \cup \{ \lambda \}$, and $\alpha \in V'$.

h_o is called the immediate operator precedence head symbol relation. If $V_i h_o V_j$ holds, then we say that V_i has an immediate operator precedence head symbol V_j. Furthermore let the binary relation H_o be defined as
Def: $V_i \Rightarrow^* V_j \alpha$ where $V_i \in V_n$, $V_j \in V_n$, and $\alpha \in V^*$
or $V_i \Rightarrow^* N V_j \alpha$ where $V_i \in V_n$, $V_j \in V_n$, $N \in V_n \cup \{ \lambda \}$, and $\alpha \in V^*$.

H_0 is called the operator precedence head symbol relation. If $V_i H_0 V_j$ holds, then we say that V_i has an operator precedence head symbol V_j. Note that H_0 is the transitive closure of h_o.

$$H_0 = h_o^*$$

In a similar fashion, we can define

Def: $V_i t_o V_j$ holds if $V_i \rightarrow \alpha$ $V_j \in P$ where $V_i \in V_n$, $V_j \in V_n$, and $\alpha \in V^*$
or $V_i \rightarrow \alpha$ $V_j \in P$ where $V_i \in V_n$, $V_j \in V_n$, $N \in V_n \cup \{ \lambda \}$, and $\alpha \in V^*$.

t_o is called the immediate operator precedence tail symbol relation. If $V_i t_o V_j$ holds, then we say that V_i has an immediate operator precedence tail symbol V_j. Furthermore let the binary relation T_o be defined as

Def: $V_i T_o V_j$ holds if $V_i \Rightarrow^* \alpha$ $V_j \in N$ where $V_i \in V_n$, $V_j \in V_n$, and $\alpha \in V^*$
or $V_i \Rightarrow^* \alpha$ $V_j \in N$ where $V_i \in V_n$, $V_j \in V_n$, $N \in V_n \cup \{ \lambda \}$, and $\alpha \in V^*$.

T_o is called the operator precedence tail symbol relation. If $V_i T_o V_j$ holds, then we say that V_i has an operator precedence tail symbol V_j. Note that T_o is the transitive closure of t_o.

$$T_o = t_o^*$$

Next let us define a binary relation for the equals operator precedence relation by

Def: $V_i E_o V_j$ if \exists a right hand side of a production of the form $\alpha V_i V_j \beta$ where V_i, $V_j \in V$ and α, $\beta \in V^*$
or \exists a right hand side of a production of the form $\alpha V_i N V_j \beta$ where V_i, $V_j \in V$, $N \in V_n \cup \{ \lambda \}$, and α, $\beta \in V^*$.

If $V_i E_o V_j$ holds, then we say that V_i can be next to (equals) V_j in some right hand side of a production in an operator precedence grammar. Note that the operator precedence equals is similar to the simple precedence equals except that the relation only holds between pairs of terminal symbols and you "look through" and non-terminals on the right hand side to observe the equals relations. Note that by inspecting the grammar, we can identify all E_o relations that hold.

The less than operator precedence relation can be identified as

Def: $V_i L_o V_j$ if \exists a right hand side of a production of the form $\alpha V_i V_k \beta \delta$ where $V_k \in V_n$, V_i, $V_j \in V$, and α, β, $\delta \in V^*$
or \exists a right hand side of a production of the form $\alpha V_i N V_k \beta \delta$ where $V_k \in V_n$, V_i, $V_j \in V$, $N \in V_n \cup \{ \lambda \}$, and α, β, $\delta \in V^*$.
If $V_i \xrightarrow{L_o} V_j$ holds, then we say that V_i is less than V_j and that V_j starts a phrase in a sentential form. Let's investigate the L_o relation a little further. Note that I can write the binary relation in the following form:

$$V_i \xrightarrow{L_o} V_j \text{ holds } \iff V_i \xrightarrow{E_o} V_k \text{ and } V_k \xrightarrow{H_o} V_j$$

This is the same definition with the binary relations substituted for the English narrative. If the E_o and H_o are binary relations that are represented by Boolean matrices E_o and H_o, respectively, then we have

$$L_o = E_o \circ H_o$$

via relational composition. Hence, if the equals relations are represented as a Boolean matrix and the head symbols are also represented as a Boolean matrix and if the row and columns are ordered identically, then the less than relations can be computed by multiplying the E_o matrix with the H_o matrix.

The **greater than** operator precedence relation can also be defined using binary relations as

Def: $V_i \xrightarrow{G_o} V_j$ if

- \exists a right hand side of a production of the form $\alpha \ V_k \ V_j \beta$ and $V_k \Rightarrow^+ \delta \ V_i$ or
- \exists a right hand side of a production of the form $\alpha \ V_k \ V_j \beta$ and $V_k \Rightarrow^+ \delta \ V_i$ and $V_l \Rightarrow^+ \ V_j \gamma$ where $V_k, V_l \in V_n, V_i, V_j \in V$, and $\alpha, \beta, \delta, \gamma \in V^*$

- \exists a right hand side of a production of the form $\alpha \ V_k \ V_j \beta$ and $V_k \Rightarrow^+ \delta \ V_i \ N$, where $V_i, V_j \in V_n \cup \{ \lambda \}$, and $\alpha, \beta, \delta \in V^*$.

If $V_i \xrightarrow{G_o} V_j$ holds, then we say that V_i is greater than V_j and that V_i ends a phrase in a sentential form. We can write the binary relation for G_o as

$$V_i \xrightarrow{G_o} V_j \text{ holds } \iff V_k \xrightarrow{E_o} V_j \text{ and } V_k \xrightarrow{T_o} V_i$$

Concentrating on G_o for the moment, we note that the above form is not in the correct form for relational composition. However, by again re-writing the above definition we can get the definition into the correct form for relational composition, namely

$$V_i \xrightarrow{G_o} V_j \text{ holds } \iff V_k \xrightarrow{E_o} V_j \text{ and } V_i \xrightarrow{T_o^T} V_k$$

Again re-writing we have

$$V_i \xrightarrow{G_o} V_j \text{ holds } \iff V_i \xrightarrow{T_o^T} V_k \text{ and } V_k \xrightarrow{E_o} V_j$$

which is in the correct form for relational composition. If we have Boolean matrices T_o and E_o that represent the binary relations T_o and E_o, respectively, then we have

$$G_o = T_o^T \ E_o$$
Review:

Computationally, we have

1. Identify h_o by looking at the grammar
2. Compute H_o by taking the transitive closure of h_o
3. Identify t_o by looking at the grammar
4. Compute T_o by taking the transitive closure of t_o
5. Identify E_o by looking at the grammar
6. Compute L_o by multiplying $E_o H_o$
7. Compute G_o by multiplying $T_o^T E$